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Abstract

In this work we analyze the properties and specificities of the dynamical, electri-
cally addressed technology of spatial light modulators(SLM). We simulate the lens
aberration correcting property in order to compare different devices (Holoeye [2])
and conclude that the GAEA (4094x2464) produces the best results. We then ana-
lyze the optical realization of the Radon transform (realized with a SLM) proposed
by [4] and discarded their results due to some artificial considerations. We propose a
novel generalizable implementation of the optical realization of the Radon transform
as well as its inverse, we suggest a joint transform correlator setup to realize it and
test the image reconstruction based on a small number of projections via compres-
sive sensing methods. We conclude that the results are similar to some state of the
art ([8] and [9]) research on the Radon transform reconstruction. In order to demon-
strate the applicability of a SLM, we propose two experiments: an alternative proof
of the optical Radon transform based on a 4f-correlator and a compressive sensing
based system known as the double random phase encoding.
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1 Introduction

Since the 1930’s, the branch of physics known as optics has gradually developed
closer ties with the communication and information sciences of electrical engineering.
Both communication systems and imaging systems are designed to collect or process
information. In the former case, the interest is focused on signals of temporal nature
while the latter one treats spatial informations. From an abstract point of view,
this difference is superficial and the strongest evidence to confirm the similarities
arises from the mathematical formalism used to describe both systems: the Fourier
analysis.

Lately, the exponential development of computer sciences added a third actor
known as computational physics and mathematics. The possibility to simulate phys-
ical systems offers many improvements in the understanding of fundamental prin-
ciples but also gives a new perspective in the field of information processing. In
this context, a strong parallel has been drawn between optical and numerical pro-
cessing. While both aim at solving the same problem, the two fields face different
constraints. On one hand, the optical processing is able to treat continuous signals
but the substantial nature of the system is subject to statistical variations and er-
rors. On the other hand, numerical processing allows to treat error-less signals at
the price of a discretization. Therefore, modern engineering focuses on translating
efficient models in the other system in order to overcome their technical restrictions.
This field of research has gained a lot of attention recently with a major technolog-
ical improvement allowing to dynamically process optical informations: the spatial
light modulator.

Sony, as a highly competitive actor in technology, creates bridges through mod-
ern engineering between theoretical discoveries and real-life applications. Among
all the investigated fields and groups, the Computational Imaging Group at the
Stuttgart Technology Center concentrates its efforts on finding adequate solutions
and applications from theoretical improvements, actively contributing to modern
engineering. The present work points in this direction and presents three tools or
principles widely used in imaging and the possible links between them: the spatial
light modulator, the Radon transform and the compressive sensing.

2 Spatial light modulator

Optical processing requires technologies able to gather informations rapidly, by some
electronic means, one would prefer a direct interface between the electronic informa-
tion and the data processing system. For this reason, the field of optical information
processing has explored a wide range of devices able to convert an electronic sig-
nal into spatially modulated optical signals. Such a device is called a spatial light
modulator and is abbreviated SLM.

There is a broad categorization of SLMs into two classes: (1) electrically driven
SLMs and (2) optically driven SLMs. In the former case, electronic signals repre-
senting an information directly drive a device in such a way that they control its
spatial distribution of absorption or phase shift. In the latter case, the information
is imported in the form of an optical image on the SLM, rather than in electrical
form. Often a given SLM technology may have two different forms, one suitable for
electrical addressing and one suitable for optical addressing.
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SLMs are not only used to input data to be processed but also to create spatial
filters that can be modified in real time, in such a case, the SLM is placed on the
back-focal plane of a Fourier transforming lens where it modifies the transmitted
amplitude of the field in accord with a desired complex spatial filter.

Several technologies exist and provide a pleasant way to realize a SLM. These in-
clude liquid crystals SLMs, magneto-optic SLMs, deformable mirror SLMs, multiple-
quantum-well SLMs and acousto-optic Bragg cells.

This work is exclusively centered on electrically addressed phase-only liquid crys-
tals on silicon SLMs and will not treat the other technologies.

2.1 Phase-only Liquid Crystal on Silicon SLMs

The liquid crystal on silicon spatial light modulator is a device with nematic (vertical,
parallel aligned or twisted) microdisplays cells of liquid crystal arranged on a silicon
substrate. An electrical addressing circuit is formed on the silicon substrate by
semiconductor technology. Each cell contains electrodes and controls its electrical
potential independently. The electric field across the liquid crystal layer can be
modulated pixel by pixel. This causes the liquid crystal molecules to tilt according
to the electric field so that the phase of light can be modulated. A difference in
the liquid crystal refractive indexes occurs in different tilt angles. Therefore, the
optical path length changes and causes a difference in the phase. Only the phase
of the light can be modulated to align the polarization of the incident light to the
alignment direction of the liquid crystal molecules. One requirement to satisfy is
that the incident light must be linearly polarized.

Figure 1: The liquid crystal on silicon SLM [1].

The figure 1 describes the technology of liquid crystal on silicon SLM. Several
applications are possible using a phase-only spatial light modulator: beam-shaping,
aberration corrections, optical pulse shaping as well as processors such as the 4f-
correlator and the joint transform correlator that might be enhanced. Other ap-
plications involving imaging, projection, holography, security systems and optical
tweezer are referring to this technology. A non-exhaustive list of publications can be
found on the archive of the European reseller Holoeye [2]. In order to demonstrate
the applicability, we simulate the lens aberration correction.
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2.2 Lens aberration correction

One remarkable property of phase-only SLMs is their ability to correct undesired
effects appearing when light passes through an optical system such as a single thin
lens. Undesired optical effects are commonly named aberrations and several of
them have been mathematically and physically described: defocus, tilt, spherical
aberration, astigmatism, coma, distortion, etc. Optical aberrations are departure
from the performance of an optical system from the predictions of the par-axial
optics.

2.2.1 Theory

To specify the properties of a lens system, we adopt the point of view that all imaging
components can be summed up into a ”black box” and that the significant properties
of the system can be completely described by specifying only the terminal properties
of the aggregate. We assume the light passing through the entrance and exit pupil is
adequately described by geometrical optics. We define zo the distance to the object,
zi to the in-focus plane, za to the de-focus image point and W (x, y) the path-length
between the aberrations wavefront and the reference spherical wavefront. The figure
2 details the considered wavefront aberration model.

Figure 2: The wavefront aberration model.

2.2.2 Frequency Response for the Diffraction Limited Case [3]

Firstly, we introduce the aberration-free model: the diffraction limited case. Diffrac-
tion effects are resulting from the exit pupil. Let us define the amplitude transmitted
by the object Uo and Ui, the image amplitude. Then:

Ui(u, v) =

+∞∫∫
−∞

h(u, v; ξ, η)Uo(ξ, η)dξdη (1)

where h(u, v; ξ, η) is the amplitude at image coordinates (u, v) in response to a
point-source object at (ξ, η). In absence of aberrations, the response h represents a
spherical wave sourced at zo converging from the exit pupil toward the ideal image
point zi on the plane (u = Mξ, v = Mη), with M the magnification. The light
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amplitude about the ideal image is the Fraunhofer diffraction pattern of the exit
pupil, thus

h(u, v; ξ, η) =
A

λzi

+∞∫∫
−∞

P (x, y)e
− 2πi
λzi

[(u−Mξ)x+(v−Mη)y]
dxdy (2)

where λ is the light wavelength, (x, y) the coordinates on the exit pupil plane and
P (x, y) is the pupil function of the exit pupil. For a diffraction limited system, the
image is the convolution of the input object with an impulse response that is the
Fraunhofer diffraction pattern of the exit pupil.

A complete description of Fourier Optics has been done by J.W. Goodman [3].

2.2.3 The Generalized Pupil function

When wavefront errors exist, we consider the exit pupil is illuminated by a perfect
spherical wave but that a phase-shifting plate exists in the aperture, thus deform-
ing the wavefront that leaves the pupil. If the phase error at the point (x, y) is
represented by 2π

λ W (x, y) with W (x, y) the effective path-length error, the complex
amplitude transmittance P(x, y) is given by:

P(x, y) = P (x, y)e−
2πi
λ W (x,y). (3)

The complex function P may be referred as the generalized pupil function. Accord-
ing to equation (2), in order to compute the aberrations effects, we replace the pupil
function P by the generalized pupil function P.

In order to demonstrate the properties of SLMs, we consider spherical aberrations
occurring when the optical system consists of a thin lens. The phase-shifting plate
can be corrected by monitoring the conjugate phase on the device. We consider that
the wavefront is quadratic and can be described as:

W (x, y) = −π(NA)2(za − zi)
x2 + y2

w2
(4)

where NA = f
w is the numerical aperture of the lens, w the radius of the lens and

f the focal length.
The correction is realized by defining a phase-element T (x, y) :

T (x, y) = e
2πi
λ W (x,y) (5)

Indeed, applying the convolution theorem then multiplying the generalized pupil
function P by the optical element T , we recover the Fourier transform of the impulse
response h in the diffraction limited case.

2.2.4 Simulation

The main purpose of the simulation is to conclude which SLM device is the most
suitable for an experimental realization and understand their properties. All the
devices are marketed by the company Holoeye Photonics AG [2].

The table 1 shows the technical specificities of the different simulated devices.
The comparison requires a precise model with the different specificities taken into
account. We build a model as follows :
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Device Type Resolution Size Fill Factor Max Phase shift Pixel Pitch

GAEA Reflective 4094x2464 15.32mmx9.22mm 0.9 3π 3.74 µm

Pluto Reflective 1920x1080 15.36mmx8.64mm 0.93 3.9π 8.0 µm

Leto Reflective 1920x1080 12.5mmx7.1mm 0.93 3.6π 6.4 µm

LC-2012 Transmissive 1024x768 36.9mmx27.6mm 0.58 1.8π 36 µm

Table 1: Spatial light modulators: technical specificities.

• The continuous limit is approximated by a grid of 4096x4096 pixels, every
simulation has the same input and is subject to the same wavefront aberration.

• The physical size of the devices is considered as infinite, only the resolution
is taken into account. As a direct consequence, our model can’t distinguish
between the Pluto and the Leto device. Although, considering the different
pixel sizes for the two devices, we would expect different results in favor of the
Leto with the smallest pitch.

• The comparison is normalized by the smallest device, different sampling rates
are considered. We define a unit cell for each resolution, each physical cell of
the device will be modeled by a number of pixels from the input discretization
of the space. The table 2 shows the different unit cells and the resulting
resolutions considered in the simulation.

• The devices square pixels imply that we can consider square devices for sim-
plicity.

• Fill factor and undesired effects of the resolution are simulated in order to dis-
tinguish between transmissive and reflective devices. For reflective devices, we
consider that the region outside the active aera of the spatial light modulator’s
cell induces a phase shift ei

√
φ where φ is the desired phase shift inside the ac-

tive aera, for transmissive devices, the fill factor is dominant and reduces the
portion of the cell’s available aera to modulate the phase of the light, blocking
the rest of the light outside the active aera. The ”worst case” model combines
both effects but on different directions, the undesired effects are expected to
be the worst. Such a configuration is very unlikely to happen on a real device;
both effects would be on the same direction. The figure 3 pictures the three
considered cases.

• The maximum phase-shift is not considered in the simulation because the
phase-element of T from equation (5) requires a maximum phase φ > 2π,
directly related to the modulo-like property of the exponential. We can already
conclude that the LC-2012 device will not be able to perfectly correct the
quadratic wavefront aberrations.
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Device Resolution Unit Cell Simulated Resolution

GAEA 4094x2464 4x4 1024x1024

Pluto/Leto 1920x1080 9x9 576x576

LC-2012 1024x768 16x16 256x256

Table 2: Unit cells for the devices subject to comparison.

Figure 3: Model of the Unit Cell for transmissive and reflective devices.

Figure 4: Comparison continuous limit/device discretization, left : x-axis, right: wave-
front.

The figure 4 shows the simulation’s continuous limit as seen by the devices once
discretized using the unit cell definition. The continuous limit and the device dis-
cretization are compared for the x-axis and the wavefront simulation. Due to the
discretization, the wavefront correction will leave artifacts in the phase shift and
therefore lower the quality of the output image with respect to the diffraction lim-
ited case:

F [h] = P × T = P × e 2πi
λ (Wslm−W ) = P × e 2πi

λ ∆W (6)

where F [] is the Fourier transform operator and Wslm is the wavefront corrected by
the simulated SLM. Since the discretization of the devices is an approximation of
the continuous limit, ∆W 6= 0 and some diffraction-like artifacts will appear on the
output following equation (1).
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Figure 5: Simulation common to all the devices, left : input, right: lens output, zo =
35mm, za = 31mm and f = 30mm.

The figure 5 shows the Shepp-Logan phantom as an input and the output of the
lens, considering aberrations. As expected, the effects of the wavefront is to blur the
input image. Our model implies that the input and the lens output are the same
for all tested devices.

Figure 6: Wavefront corrected output, left : GAEA, middle: Pluto/Leto, right : LC-
2012, zo = 35mm, za = 31mm and f = 30mm.

Corrected outputs are shown in figure 6. Artifacts predicted in equation (6) are
present in all the figures. The simulation is also taking into account the effects of
fill factor and undesired effects of the resolution. For the LC-2012 device, effects
of diffraction due to low fill-factor (0.58, see Tab.1) are dominant. For the GAEA
and the Pluto/Leto simulation, undesired effects of the resolution also induce a
diffraction that amplifies artifacts due to the corrections themselves. In order to
give an accurate comparison, we compute the correlation rate (Octave: corr2())
between the corrected outputs and the input.

The correlation rates for the different simulated devices are shown in the table 3.
Several conclusion can be deduced. First of all, the GAEA spatial light modulator
shows the best outputs and coherently satisfies the intuition ”the higher resolution,
the better”. Furthermore, one can deduce that the reflective devices are more effi-
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Device Resolution
Corrected

with discretization

Corrected
with discretization +
model of the unit cell ∆Corr2

Corrected
with discretization +

”Worst Case”
model of the unit cell

GAEA 4094x2464 0.99737 0.99188 0.00549 0.96405

Pluto/Leto 1920x1080 0.99110 0.98820 0.00290 0.96370

LC-2012 1024x768 0.98339 0.85482 0.12857 0.85577

Table 3: Different correlation rates for the simulated devices.

cient than the transmissive one. This is entirely due to the generally poor fill factor
for transmissive devices. Finally, looking at the difference between the correlation
rates with or without undesired effects ∆Corr2, for similar fill-factors between re-
flective devices, the higher resolution tends to add more noise. This is explained by
the fact that the number of cells is twice bigger to describe the same area of the im-
age, each cells having intrinsic undesired effects, the resulting noise is proportional
to the resolution.

The conclusion of this simulation is that the quadratic wavefront aberrations in-
duced by lenses can be corrected using a spatial light modulator and that the GAEA
(4094x2464) would give us the best result, even though the Pluto/Leto devices are
also rendering acceptable outputs within the assumptions of our model.

Due to its mid-resolution, we are able to check the properties of the Pluto/Leto
with its full physical resolution. We perform a simulation with a bigger discretiza-
tion, namely 4094x4094 −→ 15360x15360 leading to a device simulated with a res-
olution of 1920x1920 pixels, each of the cells modeled with 8x8 pixels. The table 4
shows the result for the higher discretization. One can notice the significant increase
in the correlation rate. Within the assumptions of our model, this result could be
expected in an experimental realization.

4094x4094 15360x15360

0.96370 0.99565

Table 4: Correlation rate for different discretizations, ”worst case” simulation.

3 Optical realization of the Radon transform

The Radon transform is the set of projections of a function f(x, y) to lines of orienta-
tion θ. The attractiveness of this transform is the existence of an inverse transform,
allowing the reconstruction of objects starting from their projections. The Radon
transform is widely used in computed tomography, image processing, pattern recog-
nition and in motion detection.
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3.1 The Radon transform

Let us consider a function f(x, y) ∈ R2 and a parametrized line at a distance r from
the origin and forming an angle θ with the x-axis:

r = x cos θ + y sin θ. (7)

The mathematical definition of the Radon transform Rf is given by:

Rf (r, θ) =

+∞∫∫
−∞

f(x, y)δ(x cos θ + y sin θ − r)dxdy (8)

where δ is the Dirac function.

3.2 Parallel-Beam Geometry

One common way to realize the equation (8) is the parallel-beam geometry. For
a given function f(x, y) in Cartesian coordinates, we construct a hyperspace of
lines L(r, θ) defined by a distance r to the origin and an angle θ with the x-axis.
The integral over each line gives the projection of the function f(x, y) for a fixed
angle, namely the Radon transform Rf (r, θ). The figure 7 pictures the parallel-beam
geometry.

Figure 7: The parallel-beam geometry.

Octave and Matlab offer an built-in function radon() and the inverse iradon(),
based on the parallel-beam geometry. An image, representing a discretization of a
signal f(x, y), taken as an input is firstly padded then summed over each pixels for
every lines. The next step is to increment the angle and repeat the approximation of
the integral by a sum. The result is presented in a ”polar-like” system of coordinates
(r, θ). The inverse transform is implemented through the filtered back projection
algorithm. The figure 8 shows the numerical computation of the Radon transform.
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Figure 8: Numerical Radon transform and it’s inverse computed from Octave’s built-in
function, resolution: 1920x1920, image size: 12.5mmx12.5mm, input size: 6 mm, left:
input, middle: Radon transform, right: inverse transform.

3.3 Fourier Slice Theorem

Another common way to realize the Radon transform arises from a purely math-
ematical description. The Fourier Slice theorem, also known as the projection
slice theorem, states that the two dimensional function f(x, y) projected onto a
one-dimensional line and Fourier-transformed is equivalent to the two-dimensional
Fourier transform of the same function f(x, y) sliced through its origin, where the
slicing is parallel to the projection line.

This result allows us to rewrite equation (8). We first compute the one-dimensional
radial Fourier transform of the Radon transform F(r)[Rf ]( σ

λf , θ):

F(r)[Rf ](
σ

λf
, θ) =

+∞∫
−∞

Rf (r, θ)e−
2πi
λf σrdr =

+∞∫∫∫
−∞

f(x, y)δ(xcosθ + ysinθ − r)e−
2πi
λf σrdxdydr

=

+∞∫∫
−∞

f(x, y)e−
2πi
λf σ[xcosθ+ysinθ]dxdy = F(x,y)[f ](

σ

λf
cosθ,

σ

λf
sinθ)

(9)

where λ is the wavelength and f the focal distance of a Fourier transforming lens.
From equation (9), we deduce:

Rf (r, θ) = F−1
( σλf )F(x,y)[f ](rcosθ, rsinθ). (10)

The equation (10) implies that the Radon transform is equivalent to applying a two-
dimensional Fourier transform, performing a ”polar-like” interpolation and then ap-
plying a one-dimensional inverse Fourier transform. The figure 9 shows the two polar
interpolations that might be used in the Fourier sliced realization of the Radon trans-
form. On the left, the standard polar interpolation defined as (x, y) = (rcosθ, rsinθ).
The problem with this representation lies in the fact that the parallel-beam geome-
try and thus the Radon transform intrinsically contains every informations twice. In
order to recover the full Radon transform, one needs to translate the standard polar
representation to the center and then double the information as if each mapping

12



radius was extended to the diagonals length of the input image. For simplicity, this
process is shown in the real space on the figure 9, right. Although, following equa-
tion (10), the whole process is applied after the two-dimensional Fourier transform,
therefore in the frequency space.

Figure 9: Projection onto polar coordinates, left : standard polar coordinate definition
centered at the image center, right: polar coordinate to match the Radon transform

The figure 10 shows the Fourier slice realization of the Radon transform on the
left and the inverse reconstruction on the right. The results are close to the ones
of the parallel-beam realization: the correlation rate corr2 ≥ 0.99. The artifacts
appearing on the sides are due to the input size, a smaller input would yield to
a better transformation. The non-bijectivity of the ”polar-like” interpolation with
the Cartesian domain could partially explain the artifacts. Indeed, due to the dis-
cretization and the finiteness of both domains, a polar interpolation is not bijective
with a Cartesian domain and therefore every transformation is followed by a loss
of information, especially at the borders. One way to overcome this issue is to
zero-pad the image before the processing, unavoidably leading to a trade-off preci-
sion/computation time.

3.4 Optical realization of the Radon Transform

The optical realization of the Radon transform was first proposed by T. Ilovitsh et al
[4]. Given a function f(x, y), they design an optical processor able to solve equation
(8). The whole process takes place in the Fourier domain where the filtering is
realized using an optical element T defined as:

T (r, θ) =
e2πiβrθ

r
(11)

where (r, θ) is supposedly a standard polar domain and β = 105 is a parameter
modulating the radius of the projections. The output is retrieved in Cartesian
coordinates. The attractiveness of this optical element is the possibility to realize
the phase element using a phase-only spatial light modulator. The left part of figure
11 shows the main result of the publication and is considered as the state of the
art. The observation arising from the equation (11) is that a circular output is
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Figure 10: Fourier slice realization of the Radon transform , left : Radon transform,
right: reconstruction using the Fourier slice inverse transformation.

generated using non polar-symmetric functions. A closer look at the phase element
of T (r, θ) concludes that the multiplication between the radius r and the angle
θ should generate spirals instead of circles. This hypothesis is verified through a
simulation and the result is presented on the right part of figure 11. In order to
retrieve the Radon transform, one should alter the angle θ in a non-physical way, by
adding some arbitrary angles to the expression for example. This method is artificial
and not generalizable, therefore, we propose a novel optical realization of the Radon
transform.

Figure 11: State of the art [4], left: (a) input, (b) the mathematical Radon transform,
(c) the optical realization, (d) the optical realization processed in polar coordinates,
right: our simulation attempt to reproduce the state of the art.
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3.4.1 Theory

The main purpose of this section is to build a bridge between the raw mathematical
definition and the engineering application of the Radon transform. Our leading
intuition is that a physical realization might enhance the applicability, optically or
numerically. The solution should satisfy two main constraints:

• The experimental realization is enabled using common optical processing tools
(lenses, filters, sensors, ...).

• The output is obtained in a Cartesian referential and the different sets of
coordinates involved in the mathematical definition are handled internally in
a simple expression.

We define the Radon transform in a set of Cartesian coordinates (ξ, η) as:

Rf (ξ, η) = (f ∗ t)(ξ, η) =

+∞∫∫
−∞

f(x, y)t(x− ξ, y − η)dxdy (12)

where ∗ is the convolution operator and t is the impulse response of the optical
processor.

For notation simplicity, the capital T ( u
λf ,

v
λf ) = F(x,y)[t](

u
λf ,

v
λf ) refers to the

two dimensional Fourier transform of a function t(x, y). The convolution theorem
allows to rewrite equation (12) as :

Rf (ξ, η) =
1

(λf)2

+∞∫∫
−∞

F (
u

λf
,
v

λf
)T (

u

λf
,
v

λf
)e

2πi
λf (uξ+vη)dudv (13)

where ( u
λf ,

v
λf ) are the corresponding spatial frequencies in the Fourier domain.

The equation (13) expresses an input signal f Fourier transformed, filtered by an
optical element T and then inverse Fourier transformed. In order to satisfy our first
constraint, the optical realization might be performed using a 4f-correlator.

Figure 12: The 4f-correlator.

The figure 12 schemes the well-known 4f-correlator that allows to optically pro-
cess a convolution of two functions. The input transparency f(x, y), placed at a
focal distance f on the object plane of the lens L1, is illuminated with a monochro-
matic light source. The thin lens L1 performs a two-dimensional Fourier transform
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of our signal, which is then multiplied by an optical element on the image plane
of L1 (respectively the object plane of L2). The outgoing signal is then Fourier
transformed by the second lens L2 and finally recorded in the image plane of L2.
The whole process describes a convolution of (f ∗ t). We want to compute T such
that the output signal of our processor is the Radon transform of the signal f .

The figure 13 shows the set of coordinates (r, θ) used in the mathematical defini-
tion of the Radon transform following equation (7). The coordinate r represents the
distance between the origin and a line over which the function f(x, y) is integrated
while θ modulates the inclination of it.

Figure 13: The Radon Transform, set of coordinate (r, θ).

The leading intuition to solve the problem is that a set of Cartesian coordinates
(ξ, η) = (r cos θ, r sin θ), representing the same hyperspace of lines, should recover
the Radon transform as integrations over circles. From equation (12) and in order
to satisfy the shift-invariance required by the convolution operator, we define:

t(x− ξ, y − η) = δ(±(x− ξ)2 ± (y − η)2 ± ρ0

√
(x− ξ)2 + (y − η)2) (14)

where ρ0 is a constant parameter modulating the circle’s radius. A more intuitive
interpretation of equation (14) arises after a few algebraic manipulations:

t(x− ξ, y − η) =

2π∫
0

δ((x− ξ) cos θ + (y − η) sin θ − ρ0)δ(−x sin θ + y cos θ)dθ. (15)

The equation (15) has two equivalent interpretations, a geometrical and a mathe-
matical one.

Geometrical interpretation

The figure 14 details the geometrical explanation behind equation (15). On the left,
the first Dirac δ represents a line over which the function f(x, y) is translated, the
constant parameter ρ0 shifts the distance of the line to the origin. In the middle, the
second Dirac δ translates the function onto the perpendicular line passing through
the origin. So far, the integration of a function f(x, y) over space and both Dirac
δ will translate the function to the intersection of both lines. Integrating over the
angle will replicate the translations over a circle. From an optical point of view,
the convolution with the impulse response t(x− ξ, y− η) will project a source point
emitting at the origin on a circle where the radius might be modulated by the
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Figure 14: Geometrical interpretation

parameter ρ0. From a numerical point of view, the constant parameter ρ0 allows
us to avoid the multiple definitions of Cartesian sets of coordinate, satisfying our
second constraint and enabling a simple numerical implementation. The radius will
de facto be matched.

Mathematical interpretation

From equation (12) and (15), we deduce

Rf (ξ, η) =

+∞∫∫
−∞

2π∫
0

f(x, y)δ((x−ξ) cos θ+(y−η) sin θ−ρ0)δ(−x sin θ+y cos θ)dθdxdy

Rf (ξ, η) =

+∞∫∫
−∞

2π∫
0

f(x, y)δ(x cos θ + y sin θ −
√
ξ2 + η2 − ρ0)

δ(y − x sin θ
cos θ )

| cos θ|
dθdxdy

Rf (ξ, η) =

+∞∫
−∞

2π∫
0

f(x, x tan θ)δ(±x±
√
ξ2 + η2 cos θ ± ρ0 cos θ)dxdθ. (16)

The equation (16) can be interpreted as the integral of a function f(x, y) over a line
parametrized by y = x tan θ, which is exactly the mathematical definition of the
Radon transform.

3.4.2 Analytical solution

In order to have a complete mathematical description, we need to compute the
optical element T ( u

λf ,
v
λf ) performing the Radon transform in the experimental re-

alization.

T (
u

λf
,
v

λf
) =

+∞∫∫
−∞

t(x− ξ, y − η)e
2πi
λf [(x−ξ)u+(y−η)v]d(x− ξ)d(y − η)
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T (
u

λf
,
v

λf
) =

+∞∫∫
−∞

2π∫
0

δ((x− ξ) cos θ + (y − η) sin θ − ρ0)δ(−x sin θ + y cos θ)

×e
2πi
λf [(x−ξ)u+(y−η)v]dθd(x− ξ)d(y − η).

(17)

We perform the canonical change of coordinate:{
t = (x− ξ) cos θ+ (y − η) sin θ

s = −(x− ξ) sin θ+ (y − η) cos θ{
(x− ξ) = t cos θ− s sin θ

(y − η) = t sin θ+ s cos θ.
(18)

The equation (17) becomes

T (
u

λf
,
v

λf
) =

+∞∫∫
−∞

2π∫
0

δ(t− ρ0)δ(s)e
2πi
λf t(u cos θ+v sin θ)e

2πi
λf s(−u sin θ+v cos θ)dtdsdθ

T (
u

λf
,
v

λf
) =

2π∫
0

e
2πi
λf ρ0(u cos(θ)+v sin θ)dθ =

2π∫
0

e
2πi
λf ρ0

√
u2+v2cos(θ−α)dθ = 2πI0(

2πi

λf
ρ0

√
u2 + v2)

(19)
where α is the angle between the vector ~u = (u, v) and the u-axis and

In(z) =
1

2π

2π∫
0

ezcosθ cos(nθ)dθ (20)

is the nth-order modified Bessel function of first kind.
Once replaced in the equation (13), the solution to the problem inspired by the

4f-correlator is given by

Rf (ξ, η) =
2π

(λf)2

+∞∫∫
−∞

F (
u

λf
,
v

λf
)I0(

2πi

λf
ρ0

√
u2 + v2)e

2πi
λf (uξ+vη)dudv. (21)

3.4.3 Simulation

The purpose of the simulation is to confirm the mathematical development of the
optical realization of the Radon transform. The figure 15 shows the simulation of
the equation (21), on the left side the Cartesian realization, on the right side the
processed output in polar representation. The correlation rate between the polar
representation (Fig.15 right) and the parallel-beam implementation of the Radon
transform(Fig.8 middle) is corr2 > 0.99.

A further investigation on the optical realization of the Radon transform might
be done by comparing the realization with an analytical solution. We consider a
circular input given by the function

f(x, y) = rect(

√
x2 + y2

2r0
), rect(t) =

 1 if |t| < 1

2
0 otherwise

. (22)

18



Figure 15: Optical realization of the Radon transform in Cartesian set of coordinates on
the left, in polar set of coordinates on the right.

where r0 is the radius of the input circle. A straightforward computation of
equation (8) gives :

Rf (r, θ) = 2
√
r2
0 − r2rect(

r

2r0
). (23)

Figure 16: Analytical simulation, left: input, middle: optical Cartesian realization, right:
Octave’s polar realization.

The figure 16 shows on the left: the input given by (22), on the middle: the
optical realization and on the right: the Octave realization of the Radon transform.

The figure 17 shows the comparison between the two different realizations with
the analytical one given by equation (23). The first observation is that the Octave
parallel-beam projection deviates from the analyitcal solution in two ways: a stepped
approximation and an asymmetry with respect to the right side. Both effects are
also present in the optical realization and might be explained by the discretization
inherent to the radon() function and the Bessel function besseli() in Octave. One
can also notice that the asymmetry present in the optical realization diverges from
the left side. Increasing the discretization reduces the error but doesn’t affect the
asymmetries. Those asymmetries lead to artifacts in the inverse transformations
between the Octave and optical realizations.

19



Figure 17: Three realizations comparison, analytical, optical and Octave parallel-beam
realization, right: zoom.

A full description of the Radon transform must necessarily include the imple-
mentation of the inverse Radon transform. We build our model by analogy with
the well-known filtered back projection algorithm. The main idea behind the filtered
back projection is to run back-projections through the image in order to obtain a
rough approximation to the original. The projections will interact constructively in
regions that correspond to the emissive sources in the original image. A problem im-
mediately apparent is the blurring (star-like artifacts) that occurs in other parts of
the reconstructed image. One would expect that a high-pass filter might be used to
eliminate the blurring. The optimal way to get rid of these patterns in the noiseless
case is through a Ramp filter. By analogy, we apply two times the Radon transform
in order to recover the blurry input image, and then filter it using a Ramp filter
defined as:

H(
u

λf
,
v

λf
)Ramp =

1

λf

√
u2 + v2 (24)

where ( u
λf ,

v
λf ) are the spatial frequencies in the Fourier domain.

The figure 18 shows on the left the parallel-beam back-projection, unfiltered
and filtered, on the middle part, the optical inverse Radon transformation. Once
the inverse transform computed, we can look at the cross recoveries, respectively
the filtered back projection from the optical realization and the optical recovery
from the parallel-beam projection. The figure 18 (right) shows the two different
recoveries. On both recoveries, we see the same major artifacts arising from the
asymmetry detailed in figure 17. Another possible explanation can come from the
interpolation between Cartesian and polar coordinate systems. Our model is highly
sensitive to the radius of projections modulated by ρ0 in the optical realization.
A better implementation of the modified Bessel function should be investigated in
order to solve this issue.

3.5 Experimental realization proposal

We want to establish an experimental proof confirming the optical realization of
the Radon transform. From the left side of equation (19), one can deduce that the
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Figure 18: Inverse Radon transformation, left: parallel-beam back-projection and fil-
tered reconstruction, middle: optical inverse realization and filtered reconstruction,
right: cross recoveries.

modified Bessel function of first kind I0 is entirely real valued, but from the right
side it can be expected that some of the values are negative or larger than one. From
an experimental point of view, a filter with negative values cannot be realized and
a filter with values larger than one is a filter point-wisely creating light. None of
this properties are realizable, especially not with a reflective spatial light modulator.
Therefore, a way to overcome the problem is to realize the convolution with the
signal f(x, y) and the impulse response t(x, y) in the object plane of the first lens.
A convenient method to realize this convolution is the joint transform correlator.

3.5.1 The Joint Transform correlator

The joint transform correlator [5] is a method for performing complex filtering using
a spatial carrier for encoding amplitude and phase information. Both the desired
impulse response and the signal to be filtered are presented simultaneously during
the recording process. Consider the recording in figure 19(a). Lens L1, with focal
length f, collimates the light from the point source S, with wavelength λ. This
collimated light then illuminates a pair of transparencies residing in the same plane,
h for the desired impulse response and g for the signal to be filtered. For simplicity
this input is taken to be the front focal plane of the Fourier transforming lens L2

(vignetting will be eliminated if the inputs are placed in contact with lens, rather
than in front of it). The Fourier transform of the composite input appears in the
rear focal plane of L2, where the incident intensity is detected by a photographic
medium, e.g. an image sensor.
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Figure 19: The joint transform correlator: (a) Recording the filter, (b) obtaining the
filtered output.

The field transmitted through the front focal plane is given by

U1(x1, y1) = h(x1, y1 −
Y

2
) + g(x1, y1 +

Y

2
) (25)

where the separation between the centers of the two inputs is Y . In the image plane
of the lens L2 we find the Fourier transform of this field,

U2(x2, y2) =
1

λf
H

(
x2

λf
,
y2

λf

)
e

−iπy2Y
λf +

1

λf
G

(
x2

λf
,
y2

λf

)
e

+iπy2Y
λf (26)

where H, G are the Fourier transformations of h and g. Taking the square magnitude
of this field, the incident intensity on the recording plane is found to be

I2(x2, y2) =
1

λ2f2

[∣∣∣∣H ( x2

λf
,
y2

λf

)∣∣∣∣2 +

∣∣∣∣G( x2

λf
,
y2

λf

)∣∣∣∣2
]

+
1

λ2f2
H

(
x2

λf
,
y2

λf

)
G∗
(
x2

λf
,
y2

λf

)
e

−i2πy2Y
λf

+
1

λ2f2
H∗
(
x2

λf
,
y2

λf

)
G

(
x2

λf
,
y2

λf

)
e

+i2πy2Y
λf .

(27)

The transparency that results from this recording is assumed to have an amplitude
transmittance proportional to the intensity that exposed it. After processing, this
transparency, e.g. a transparent liquid crystal imaging device, is illuminated by
collimated light and the the transmitted field is Fourier transformed by a lens L4,
assumed to have the same focal length f (see Fig. 19(b)). The field in the image
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focal plane of L4 is

U3(x3, y3) =
1

λf
[h(x3, y3) ∗ h∗(−x3,−y3) + g(x3, y3) ∗ g∗(−x3,−y3)]

+
1

λf
h(x3, y3) ∗ g∗(−x3,−y3) ∗ δ(x3, y3 − Y )

+
1

λf
h(−x3,−y3) ∗ g∗(x3, y3) ∗ δ(x3, y3 + Y ).

(28)

We can rewrite the 3rd and 4th term as

h(x3, y3) ∗ g∗(−x3,−y3) ∗ δ(x3, y3 − Y )

=

+∞∫∫
−∞

h(ξ, η)g∗(ξ − x3, η − y3 + Y )dξdη
(29)

and

h∗(−x3,−y3) ∗ g(x3, y3) ∗ δ(x3, y3 + Y )

=

+∞∫∫
−∞

g(ξ, η)h∗(ξ − x3, η − y3 − Y )dξdη.
(30)

Both of these expressions are cross-correlations between the functions g and h.
One output is centered at coordinates (0,−Y ) and the other at coordinates (0, Y ).

In our case, both the impulse response h and the signal g are real valued. In order
to recover the convolution as an output in (x3, y3), from equation (27), we subtract
the two squared amplitudes before filtering the transparency in the second optical
processor (Fig. 19(b)). This is done by passing each of the functions, separately,
with a mirror image in the joint transform correlator.

3.5.2 Simulation

The joint transform correlator allows us to consider every element in the real space.
The impulse response h as seen in figure 20(middle) is a circle. From an optical
point of view, every point of the signal g will be projected on a circle through the
convolution with the impulse response h leading to a sum over all the angles on
the output. The implementation of the impulse response h is done by taking the
Fourier transform of the optical element T defined by equation (19). Experimental
requirements force us to resize h(x, y) ∈ [0, 1]. In order to generate the expected
output (Fig. 20(right)), we perform the mathematical convolution (g ∗ h). The
resizing induces artifacts in the output that will be expected in the output of the
joint transform correlator.

The figure 21 shows the results of the joint transform correlator as it could be
expected in an experimental realization. In order to generate the output U3(x3, y3),
as suggested in equation (27), we perform the recording (Fig. 19(a)) three times:
once with h and g, once with h and h and once with g and g. In the Fourier domain,
we subtract the intensities from the two latter processes to the former one. We then
take the resulting intensity and process it as prescribed in figure 19(b). The output
is twice the convolution of the signal g and the impulse response h, both centered
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Figure 20: The joint transform correlator, left: the signal to be filtered g, middle: the
impulse response h (contrasted), right: the expected output.

Figure 21: The joint transform correlator: optical realization of the Radon transform,
left: U1(x1, y1) (contrasted), right: U3(x3, y3).

2 times further than the centers in the input U1(x1, y1), as predicted in equations
(29) and (30).

The joint transform correlator has several other applications and some variants
have been introduced in the literature. Placing an intensity spatial light modulator
at the plane (x2, y2) or (x3, y3) allows to dynamically convolve, cross-correlate func-
tions or add non-linearities leading to interesting applications in pattern recognition,
security systems and super-resolution through compressive sensing. Depending on
the application, the 4f-correlator and the joint transform correlator are interchange-
able leading to interesting developments between optical and numerical processing.
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4 Compressive sensing

We demonstrate the applicability of the optical Radon transform in a field where
the parallel-beam geometry is commonly used: undersampled image reconstruction.
The traditional approach of reconstructing signals or images from measured data
follows the Shannon-Nyquist theorem, which states that the sampling rate must be
twice the highest frequency. Similarly, the fundamental theorem of linear algebra
suggests that the number of collected measurements of a discrete finite-dimensional
signal should be at least the length of the signal in order to ensure reconstruction.
The theory of compressive sensing provides a fundamentally new approach to data
acquisition which overcomes this common wisdom. It predicts that certain signals or
images can be recovered from what was previously believed to be highly incomplete
measurements.

Compressive sensing is based on the empirical observation that many types of
signals have a sparse representation in terms of a given basis. This means that the
expansion has only a small number of significant terms.

4.1 Theoretical considerations

Let us first define the lp-norm of a vector x ∈ CN

||x||p :=

 N∑
j=1

|x|p
 1

p

, 0 < p <∞

||x||∞ := max
j=1,..,N

|xj |. (31)

The support of a vector x is denoted supp(x) = {j : xj 6= 0}, and

||x||0 := |supp(x)|. (32)

A vector x is called k-sparse if ||x||0 ≤ k. Compressive sensing predicts that
reconstruction from vastly undersampled measurement is possible. We define the
measurement matrix A ∈ Cm×N taking m linear measurements from a vector x ∈
CN . The measurement vector y ∈ Cm is given by:

y = Ax. (33)

From equation (33) and in the case m � N , it is impossible to recover x from y
since the linear system is highly underdetermined. However, if the assumption that
the vector x is k-sparse is imposed, the underdetermination might be overcome.

The most intuitive approach for a recovery procedure is to search the sparsest
vector x which is consistent with the measurement y = Ax. This leads to solving
the l0−minimization problem:

min||x||0 subject to Ax = y. (34)

Unfortunately, an algorithm that solves the equation (34) for any matrix A and any y
is necessarily computationally impossible (also called NP-hard problem). Two main
alternatives have been proposed: convex relaxation leading to l1-minimization- also
called basis pursuit and greedy algorithms, such as various matching pursuits. A
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detailed and complete survey of compressive sensing method and its algorithmic
solutions has been done by M. Fornasier and H. Rauhut [6]. For simplicity and in
order to compare our results to some state of the art research on the topic, we focus
on the l1−minimization problem through the method proposed by J.M Bioucas et
al : TwIST [7].

4.2 TwIST algorithm

The two-step iterative shrinkage/thresholding algorithm, TwIST, is an open source
algorithm for solving convex relaxation. We will only outline the main point of the
method and the way we use it. Several applications such as denoising problems
and compression problems are directly proposed in the defining paper [7]. The
application to a computed tomography problem involving the Radon transform has
been proposed by B.G. Chae et al [8] and will be considered as our state of the art
point of comparison.

The image restoration is a classical linear inverse problem where starting from a
measurement y we try to find the original image x (possibly noisy). The approach
defines a solution as a minimizer of a convex objective function f : X → R̄ =
[−∞,+∞], given by

f(x) =
1

2
||y −Ax||2 + λΦ(x) (35)

where A : X → Y is a linear direct operator, X and Y are real Hilbert spaces
both with norm || · ||, Φ is a regularizer and λ a parameter. TwIST is an iterative
algorithm represented as:

xk+1 = (1− α)xk−1 + (α− β)xk + βΓλ(xk) (36)

Γλ(x) = Φλ(x−AT(Ax− y)) (37)

where α and β are parameters depending on the eigenvalues of the measurement
matrix A. Let us define ξ1 and ξm the minimal and maximal eigenvalue of A. Then
κ is defined as ξ1

ξm
. The spectral radius ρ is given by

ρ =
1−
√
κ

1 +
√
κ
< 1. (38)

The performance of the algorithm is given by the two optimal parameters :

α = ρ2 + 1 (39)

β =
2α

ξ1 + ξ2
. (40)

In order to specify equation (35), we need to focus our interest on the type of
images we want to reconstruct. The Radon transform is widely used in Computed
Tomography to reconstruct brain images from the projections. For practical reason,
the signal’s acquisition can’t be made through a sparsifying operator such as a
wavelet decomposition (very popular in compressive sensing). Therefore, we consider
the l2−norm as the norm of the Hilbert space. In order to overcome the sparsity
problem arising, the Total Variation regularizer ||∇x||1 is considered because of the
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empirical observation that most of the computed tomography images are sparse
under gradient transform. The problem we solve using TwIST can be written as:

min
x
f(x) =

1

2
||Ax− y||22 + λ||∇x||1 subject to Ax = y (41)

where A is the optical realization of the Radon transform. One advantage of the
TwIST algorithm is that we can use it with handle functions. Therefore, we define
A as:

A = S ◦ F−1[I0 ◦ F [x]] (42)

where I0 is the 0-th order modified Bessel function of first kind, the operator ◦ is
the element-wise (Hadamard) product and S is a stripping matrix corresponding to
the measurements we take from a certain number of projections.

4.3 Simulation

We want to prove that the optical realization of the Radon transform leads to similar
results as the state of the art [8]. Therefore we take the same intitial condition. The
input image is the Shepp-Logan phantom with a resolution of 256x256 pixels. We
take 32 projections from the Radon transform and reconstruct the input image using
TwIST. The only difference is the way the measurement matrix A is generated. The
state of the art uses the parallel-beam geometry and the filtered back projection while
we use the optical realization of the Radon transform.

Figure 22: Image reconstruction using TwIST, upper part: state of the art results, lower
part: optical realization results.

The figure 22 shows on the upper part the state of the art results and on the
lower part the optical realization results. The left side details the 32 projections
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taken from the Radon transform, in the middle the TwIST restored image and the
right side represents the root mean square error (RMSE) directly provided by the
TwIST algorithm with respect to the ideal image. The optical reconstruction uses
a parameter λ = 10−5 as a regularizer (see Eq.(35)). Since we use handle functions,
we don’t have an explicit access to the matrix A (which would be computationally
extremely costly) and no access to the eigenvalues. Therefore, the parameters α
and β are set to the defaults values suggested by the TwIST algorithm (namely
ξ1 = 10−4 and ξm = 1). An improvement in the results could be investigated
through the optimization of the parameters α and β. Nevertheless, considering
the RMSE, one can conclude that the optical realization of the Radon transform
leads to similar results as the ones from the parallel-beam geometry. The optical
realization of the Radon transform can be used in image reconstruction, allowing
a possible bridge between optical processing and numerical processing provided an
improvement of the realization in the two fields. A further comparison can be made
through the time required per iterations of the algorithm.

256x256 32 Proj. [s] 256x256 64 Proj. [s] 512x512 32 Proj. [s]

Parallel-Beam 0.05 0.1 0.2

Optical Realization 0.2 0.2 0.8

Table 5: Parallel-Beam and Optical reconstruction with Matlab: time per iterations
with respect to the resolution and the number of projections.

The table 5 shows the different times per iteration required by the algorithm
with respect to the resolution and the number of projections. If Npix is the total
number of pixels and Nθ the number of projections, one can easily conclude that the
complexity of the optical reconstruction isO(Npix) while the parallel-beam geometry
complexity isO(Npix×Nθ). One can notice that the time per iteration for the optical
realization is 4 times bigger, this is due to the fact that the input is first zero-padded
(256x256→1024x1024) before processing. This padding is made to ensure the one
to one matching with the parallel-beam geometry and corresponds to the tuning
of the parameter ρ0 (see Eq.(19)). One way to overcome the padding issue is to
tune the parameter ρ0 is such a way that the circle of projections is contained in
the initial resolution. Therefore, the conversion between the parallel-beam geometry
and the optical realization would not be one to one anymore but in some kind of
linear relation. This linear relation would obviously stay true in an experimental
realization. Such a manipulation could lead to a significant improvement in the
processing time, approximatively 16 times faster.

We also demonstrate the applicability of the realization on different sets of im-
ages. The figure 23 shows the different results in terms of peak signal to noise
ratio (PSNR) for two different images. The quality of the reconstruction increases
with the number of projections, as expected. The difference in the PSNR for the
same number of projections is related to the sparsity of the signal under the Total
Variation regularizer.

Further developments have been made by S. Evladov et al [9]. They solve the
same reconstruction problem but using parallel-beam geometry with a direct ac-
cess to the matrix A. Due to the computational cost of the matrix, they only
generate the required rows for the forward projection via a method called Ordered
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Figure 23: Optical Image reconstruction for different number of projections, upper:
angiography, lower : head and neck.

Subset Estimation Maximization (OS-EM). They also provide a progressive method
to reconstruct the input image by sampling with the golden angle with the TwIST
algorithm. Although, due to the lack of quality criteria in their publication, it’s
hard to conclude if our implementation leads to any improvement concerning the
reconstruction itself.

The figure 24 compares on the left the reconstruction of the Shepp-Logan phan-
tom in terms of PSNR as a function of the projections, on the right, the state of the
art [9]. Not having access to their input image, we only compare the behaviors of the
reconstruction for two different image. The conclusion arising from the comparison,
especially with the part (c), is that the reconstruction in the space domain of both
images exhibits a similar tendency.

Finally, the optical realization of the Radon transform seems to behave as the
parallel-beam geometry. Therefore, a further investigation should aim at improving
the matching between the two methods in order to make them interchangeable,
allowing a greater flexibility in optical and numerical processing.

5 Applications

Phase-only spatial light modulators, optical realization of the Radon transform and
compressive sensing are the three main points we detailed with an application. So
far, we couldn’t link the optical realization of the Radon transform and the spatial
light modulators or the spatial light modulators and the compressive sensing. There-
fore, we introduce two experimentally realizable examples: an alternative proof of
the optical Radon transform and the double random phase encoding.
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Figure 24: PSNR as number of projections, left: Shepp-Logan reconstruction in the
space domain, right: state of the art [9] (a) reconstruction in the wavelet domain, (b)
reconstruction in the space domain, (c) synthetic image as an input.

Alternative proof of the optical Radon transform

From equation (19), one can notice that the term to be integrated is a phase-element
only. Approximating the integral by a sum we get

T (
u

λf
,
v

λf
) =

1

N

2π∑
θ

e
2πi
λf ρ0(u cos θ+v sin θ) (43)

where N is the total number of steps we use to discretize the domain [0, 2π[. The
figure 25 shows the output of the simulation for θ = π

2 and θ ∈ [π2 , π[. As ex-
pected from the geometrical interpretation, the input image is projected on a circle
where the radius is controlled by the parameter ρ0. Once summed over a domain
the Radon transform is recovered. One way to realize this experiment would be
to generate each optical element one at a time and then to sum all the recorded
pictures via post-processing. The simplest experimental setup is the 4f-correlator
(Fig.12). Compactness could be achieved by using a single lens and a beam-splitter,
taking advantage of the reflectiveness of the SLM. This way, lens aberrations can
be corrected only for one lens and then multiplied to the optical element leading to
a result close to the simulation. Agreeing results would be a proof that the optical
realization of the Radon transform is related to the modified Bessel function of first
kind. The advantage of the method is that the artifacts seen during the joint trans-
form realization are suppressed and thus the recovery is more precise. Although,
the clear trade-off precision/computational time appears and is directly related to
the addressing time of the SLM device.

Double Random Phase Encoding

The double random phase encoding (DRPE) was first developed for optical security.
Let us consider the figure 26. The optical system consists of two phase masks placed
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Figure 25: Optical realization of the Radon transform for left: θ = π
2 , right: θ ∈ [π2 , π].

in the input and the Fourier plane. Let f(x, y) be the signal we want to process.
On its free propagation toward the Fourier transforming lens L1, the signal is mul-
tiplied by a phase mask e2πip(x,y) where p(x, y) is an independently and identically
distributed variable following an uniform distribution between [0,1]. On the plane
(u, v) we recover

G(
u

λf
,
v

λf
) =

+∞∫∫
−∞

f(x, y)e2πip(x,y)e−
2πi
λf (xu+yv)dxdy. (44)

The transmitted field G( u
λf ,

v
λf ) is then multiplied by a phase e2πib( uλf ,

v
λf ) where

b( u
λf ,

v
λf ) is also an independently and identically variable following an uniform

distribution between [0,1]. Once the Fourier transforming lens L2 is passed, we
retrieve the output signal g(ξ, η) in Cartesian coordinates :

g(ξ, η) =
1

(λf)2

+∞∫∫
−∞

G(
u

λf
,
v

λf
)e2πib( uλf ,

v
λf )e

2πi
λf (uξ+vη)dudv. (45)

The attractiveness of the whole process it that the output signal g(ξ, η) is part of
a single exposure compressive scheme. This is due to the fact that it implements a
universal compressive sensing scheme. Indeed, it can be shown [10] that the DRPE
behaves the same way as the Gaussian universal sensing operator. In a matrix
representation, the first phase mask and the lens L1 hold an inter-column statistical
independence. Therefore G( u

λf ,
v
λf ) is a de-correlated measurement of f(x, y) in the

space-domain. The second phase mask and the lens L2 act in a similar manner
but in the frequency domain. Finally, the whole process ensures that the output
signal g(ξ, η) holds a inter-row and inter-column statistical independence. In this
manner, the output signal has the required properties to be fully reconstructed by
compressive sensing algorithms, even if the signal is blurred or sub-sampled. Those
interesting properties have been declined in a several number of applications such
as super-resolution [10] or optical security [11].

The figure 27 presents an experimental setup to realize the DRPE. A realization
might be done using a single reflective SLM. Taking advantage of the electrical
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Figure 26: The double random phase encoding.

addressing property of the SLM, one can split the monitor in order to produce two
different phase modulations. A suitable set of lenses should be used in order to keep a
small angle of reflection and ensure the validity of the par-axial approximation. The
output function recorded on the photographic medium has the compressive sensing
properties required to perform an optimal reconstruction. The super-resolution
theory states that the limiting resolution is the resolution of the optical processor
itself and not the recorder, in this case, the resolution of the SLM. With a suitable
algorithmic reconstruction, one should be able to retrieve the input image with the
resolution of the SLM [10]. One can also note that the lens aberration is still possible
to obtain better results.

6 Conclusion

Finally, the active field of image processing provides a lot of flexibility when it
comes to solve challenging problems. The close bound between optical and numeri-
cal processing allows parallel improvements in both technologies leading to genuine
solutions but also to enhancement in the way of thinking and solving problems.

Concerning the spatial light modulator, the technology is very promising and con-
stantly growing. The wide range of applications arising from the dynamical character
of the technology broadens the possibilities of image processing and announces the
spatial light modulator as a strong candidate in forthcoming technologies. The com-
bination with compressive sensing opens several prospects toward super-resolution,
denoising, deblurring and various sorts of corrections that can strengthen the perfor-
mance of an optical processor. A wider study should be accomplished on intensity
modulators to understand their restrictions as wells as the possibilities it might offer
in Fourier filtering.

Furthermore, the Radon transform and it’s multiple expressions confirms its ben-
efits in imaging. From the compressive sensing point of view, recovering an input
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Figure 27: The experimental double random phase encoding.

image from a small number of projections expands the possibilities towards a lighter
storage of informations and towards acquisition techniques. Regarding the expres-
sion itself, the possibility to compute it in Cartesian coordinates grants specific
options in the sense of the Cartesian domain is naturally linked to numerical pro-
cessing and a multitude of approaches can be used when it comes to manage noise or
blurring. Further research should be conducted on the matching between the differ-
ent realizations and on the possibility to apply the physically-inspired computation
on the Radon transform in three or more dimensions as well as on other trans-
forms such as the Funk transform and the Hough transform. Another topic to be
investigated is the relationship between the optical realization and the Fourier-slice
realization of the Radon transform. Recalling equation (10) and (21), the difference
between the two realizations arises after the first two dimensional Fourier transform,
suggesting that the filtering by the Bessel function followed by a two dimensional
Fourier transformation is equivalent to performing a polar interpolation followed by
a one dimensional Fourier transformation. This result opens up the possibility to
perform a one dimensional radial Fourier transformation with an optical system.
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